Enviropedia
Climate Change
Global Warming
Ozone
Air Pollution
Weather & Climate
Sustainability
Kids
INFORMATION
Climate System
Climate Change
Empirical Study
Climate Models
Palaeoclimates
Global Warming
Introduction
Greenhouse Effect
Enhanced G-Effect
Greenhouse Gases
 - Carbon Dioxide
   - Sources
   - Sinks
   - Carbon Cycle
   - Concentrations
   - Equilibrium
 - Methane
   - Sources
   - Sinks
   - Concentrations
 - Nitrous Oxide
   - Sources
   - Sinks
   - Concentrations
 - Halocarbons
   - Sources
   - Sinks
   - Concentrations
 - Ozone
 - Other Trace Gases
 - Adjustment Time
 - Summary
Greenhouse Forcing
 - Forcing Factors
 - GWPs
 - ΔF-ΔC Relationships
 - 1765 to 1990
 - Ozone
Aerosols
 - Aerosols
 - Radiative Forcing
   - Direct
   - Indirect
 - Total Forcing
Climate Variations
 - Surface Temperature
 - Precipitation
 - Other Variations
   - Stratosphere
   - Cryosphere
   - Circulation
   - Cloudiness
Detection
 - Modelling
 - Attribution
   - Latitudes
   - Stratosphere
   - Precipitation
   - Sea Level Rise
   - Fingerprints
 - When?
Future Climate
 - GCM Simulations
 - Feedbacks
   - Water Vapour
   - Clouds
   - Ice Albedo
   - Greenhouse Gases
 - 21st Century
Impacts
 - Agriculture
 - Forestry
 - Ecosystems
 - Water Resources
 - Oceans & Coasts
 - Humans & Health
Responses
 - Stabilising
 - FCCC
 - Kyoto Protocol
 - UK Programme
   - Energy Demand
   - Energy Supply
 - Evaluation
Conclusion
LINKS
Navigate

5.3.1. Pleistocene Glacials and Interglacials

Numerous proxy records have been used to reconstruct Pleistocene climate variations. Before the widespread use of deep-sea sediment cores, it was known that there had been a number of fluctuations of Pleistocene glaciers. Windblown loess deposits have also been used to demonstrate climate change on the continents (Kukla, 1970). However, it was the advent of oxygen isotope analysis of nannofossils in deep-sea cores which really marked the breakthrough in Pleistocene climate reconstruction. Figure 5.9 shows a record of 18O fluctuations for the last 2.5Ma. Within it, distinct cycles are evident that demonstrate changes both in ocean temperature and global ice volume (recall section 3.3.4.1).

Analysis of the 18O record indicates two basis climate states, one glacial and one interglacial. Evidence for these bistable climate state is further provided by oxygen isotope analysis of numerous ice cores. Figure 5.10 shows a 18O profile along the Camp Century (Greenland) ice core (Dansgaard et al., 1984) for the last 130,000 years. The record clearly reveals the last major interglacial period at about 120 thousand years (Ka) and the ensuing glaciation.

Sea level estimates from isotope analysis reconstructions (Shackleton, 1988) bear a striking resemblance to palaeo-temperature and ice volume curves (see Figure 5.11). The crucial issue to researchers was to determine the cause of such pronounced variations in the climate. A mechanism was needed which could force changes in climate over periods of tens to hundreds of thousands of years. Today, it is generally accepted that the glacial-interglacial transitions of the Pleistocene Epoch are driven by variations in the Earth's orbit around the Sun.